
International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1050

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Efficient Task Scheduling Algorithm for Multi-Core
Systems

Nithin Gowda K N1, 1BMS College of Engineering, Bengaluru, nithinkn.lvs19@bmsce.ac.in

K P Lakshmi2, 2BMS College of Engineering, Bengaluru, kpl.ece@bmsce.ac.in

Abstract— A multi-core processor is a single integrated socket containing more than one processing unit, commonly known as cores. Multicore

technology has become very popular and needed in recent years because of its wide range of advantages over single-core processors. Multicore

processing has advantages in Energy Efficiency, Performance, Isolation, Reliability and Robustness and lesser hardware Costs. Automotive electronics

are any electrically generated systems used in all sorts of automotive systems to control engines. Electronic Control Unit (ECU) is an embedded

electronic device that reads signals coming from various sensors placed at various parts of the devices and controls important units like any automated

operations. The overheads faced in multicores include contention of shared resources, synchronization between cores, and the overhead of scheduling

jobs to those cores present. The proposed Life-Time(LT) scheduler framework is an approach of scheduling multicores in an efficient manner by

addressing various multicore overheads and mainly focusing on the distribution of workload among the cores for their balanced performance at the

same rate, keeping the other parameters almost comparable with the standard schedulers such as EDF, RM, LLF and G_FL scheduling algorithms.

Keywords: EDF - Earliest Deadline First, RM - Rate Monotonic, LLF - Least Laxity First, G_FL - Global-Fair Lateness.

—————————— ——————————

1 INTRODUCTION

A single-core processor has to run many instructions in a

limited amount of time, which demands to increase its speed of

execution and that is out of normal mode, which in turn

increases the heat dissipation and hence the performance, or

integrity of the processor will be compromised. Efficient

algorithms should be used for the implementation of cores to

achieve better performance. Software that can run parallel is

preferred. Multicore systems are used widely in various

domains including Automotive Electronics.

Concentrating on vehicle automation, automotive electronics

are any electrically generated systems used in road vehicles to

control engines. The first electronic pieces used to control

engine functions are referred to as Engine Control Units (ECU).

A modern car may have up to 100 ECUs and a commercial

vehicle up to 40. Electronic Control Unit (ECU) is an embedded

electronic device that reads signals coming from various

sensors placed at various parts of the car and controls important

functions like any automated operations. A software supervisor

is a computer system that controls different applications

running simultaneously in the vehicle. Real-time requirements

are mandatory in the automotive domain and are to be

respected.

In this paper, cluster-based scheduling of tasks is proposed

where the total number of tasks entered by the user is first

grouped and then scheduled based on their cluster. The SimSo

tool is used for scheduling purposes with scripts written in

python. Random test cases are generated to schedule on the

custom Life Time (LT) Scheduler and the test result is

compared with the performance of the standard schedulers

such as Earliest Deadline First (EDF), Rate Monotonic (RM),

Least Laxity First (LLF) and Global-Fair Lateness (G-FL).

The overheads faced in multicores include contention of shared

resources, synchronization between cores, and the overhead of

scheduling jobs to those cores present. It may seem that by

increasing the number of cores we can achieve parallelism and

hence by reducing the load and execution becomes faster but as

the number of cores is increased without proper control over it

then overhead multicores become more dominant and affect

the performance of the multicore system negatively. So, it is not

correct to think that a multicore system can be made faster just

by adding more cores. The number of cores that can be added

should be able to balance so that it decreases the overheads on

a single core system and it doesn't possess significantly higher

overheads of the multicores. Thus, proper research or study on

scheduling algorithms is needed to solve the overheads faced

by the multicores.

Fig 1. ECU Braking System

Non-linear growth in acceleration and deceleration when

throttle or brake is applied so that greater change in speed can

be seen with small human intervention as the intensity of

throttle or brake is increased over time which is not easy to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1051

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

achieve without an Electronic Control Unit (ECU) in the

braking system.

2 STANDARD ALGORITHMS

In a real-time system, a scheduling algorithm decides the

sequence in which tasks need to be executed.

2.1 Earliest Deadline First

In Earliest Deadline First (EDF) scheduling, at every scheduling

point the task having the shortest deadline is taken up for

scheduling. The Earliest deadline first selects a task according

to its deadline such that a task with the earliest deadline has

higher priority than others. It means the priority of a task is

inversely proportional to its absolute deadline. EDF is an

optimal algorithm which means if a task set is feasible, it is

surely scheduled by EDF. Another thing is that EDF does not

specifically take any assumption on periodicity of tasks so it is

independent of the Period of task and therefore can be used to

schedule aperiodic tasks as well.

2.2 Rate Monotonic

Rate- Monotonic Algorithm uses a mathematical model of static

priority-based scheduling where the priority is the period of the

tasks. It supports the intuition that the tasks that occur more

frequently should be given higher priority. The Working of

RMA depends on the periods of the tasks. These feasibility tests

are generally known as schedulability bounds. For an algorithm

to work, it must be within certain limits. Schedulability bound

provides this limit.

2.3 Least Laxity First

The Least Laxity First(LLF) scheduling algorithm assigns a

priority to a task according to its executing urgency. The smaller

the laxity value of a task is, the higher priority it will get and the

sooner it gets executed. LLF algorithm also results in more task

preemption as the laxity of each task changes at every instant of

time and if a task other than the presently executing task gets lesser

laxity then the present task will be preempted to schedule the other

task which got lesser laxity.

2.4 G_FL

G-FL is a G-EDF-like scheduler but has lower maximum lateness

bounds than GEDF. Due to its G-EDF like nature, it can be used

within existing systems that implement arbitrary-deadline [14].

3 PROPOSED TECHNIQUE

In this section, the execution flow of the task sets using the Life-

Time scheduler logic is defined.

Step 1: Test Object Creation

All the necessary building blocks for the execution are gathered

in one python class called “my_config”. So, the first thing a user

needs to do is create an object for this class and then explore the

inner possibilities to add and execute a test. It is very convenient

to have all the building blocks available in one class.

Example:

Fig 2. Test object ‘TestObj’ creation

Step 2: Tasks Addition & Distribution

The tasks that are added are classified into any one of the five

different clusters available based on the task parameters given

at the time of adding tasks into the framework.

They are namely,

1. Application Software tasks

2. ISR (Interrupt Service Routine) tasks

3. Resource dependent tasks

4. High-frequency tasks

5. Low-frequency tasks

Example:

Fig 3. Adding tasks to the TestObj object

Step 3: Cores Addition & Distribution

Once the overall tasks are added they are classified into

clusters, the total number of cores for execution is specified and

they are distributed among the available clusters

proportionally based on the total Worst-Case Execution Time

(WCET) within which all tasks in each cluster will be executed.

Example:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1052

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Fig 4. Adding cores to the TestObj object

Step 4: Specify Execution Time

Once both tasks and cores are added and distributed among the

available clusters, the total execution time specified to run the

simulation is specified to run the framework.

Example:

Fig 5. Adding Simulation Time to TestObj object

Step 5: Life-Time (LT) Scheduler

In this paper, we will introduce a new method of assigning

priorities depending on each task’s lifetime, where Life-time =

Deadline-time - Arrival-time → (if the task is not yet running)

Lifetime = Deadline-time - present-time → (if the task is

running)

If the lifetime is less than the priority will be high and if the

lifetime is more than the priority will be less for a task. By

considering the priorities, tasks will be preempted whenever

necessary.

Step 6: Run the simulation for each cluster of tasks

Once the setup is all done, we can run the simulation which

internally runs as specified in the cluster manner with better

cores distributions and task executions.

4 DATA ANALYSIS

The Simulations of this framework were tested using a python

programming language by considering a variable number of

task sets considered at each iteration in the order of 10, 20, 30

and 40 numbers of task sets running for a total of 200ms and

with 10 cores. The framework is tested for the custom scheduler

technique “Life-Time” scheduler, after which the results are

compared with the standard scheduling algorithms namely

Earliest Deadline First (EDF), Rate Monotonic (RM), Least

Laxity First (LLF) and Global-Fair Lateness.

4.1 Tasks Activations Analysis

Task activation is defined as the instantiation of any instance of

a task (periodic or aperiodic) that occurred in the execution and

hence every activation of the instance of the periodic task is

considered as one task activation.

A number of tasks activations are observed at each scheduler

technique for the various task sets generated. This gives an

overview of how many task instances were inserted, where

each occurrence of a periodic task is considered as one instance

of the task.

No. of Tasks Activations

No. of Tasks EDF RM LLF G_FL Life-Time

10 235 235 235 235 235

20 442 442 442 442 442

30 637 637 637 637 637

40 825 825 825 825 825

Table 1. No. of Tasks Activations

Graph 1. No. of Tasks Activations

From the above analysis, it is evident that the same task sets

were introduced to all the schedulers considered and hence the

same number of task activations are observed for all schedulers

in the particular scenarios.

4.2 Tasks Executions Analysis

A number of tasks executions are observed at each scheduler

technique for the various task sets generated. This gives an

overview of how many task scenarios were actually running in

the simulation time as a whole. Each occurrence of a periodic

task is considered as one instance of the task.

No. of Tasks Executions

No. of

Tasks EDF RM LLF G_FL Life-Time

10 273 284 477 287 311

20 588 713 1175 573 644

30 781 858 1474 745 785

40 975 952 1608 851 1120

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1053

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Table 2. No. of Tasks Executions

Graph 2. No. of Tasks Executions

From the above analysis, it is evident that the Life-Time

scheduler results are comparable to the rest of the scheduler

techniques (EDF, RM, and G_FL) and better than LLF.

4.3 Tasks Preemptions Analysis

Task preemption is defined as the removal of a running instance

of the task when the scheduler finds another better fit and more

prior task instance that needs to be executed first than the

present running task instance.

A number of task preemptions are observed at each scheduler

technique for the various task sets generated.

No. of Tasks Preemptions

No. of

Tasks EDF RM LLF G_FL Life-Time

10 38 49 244 52 94

20 159 391 831 209 335

30 175 557 1107 425 582

40 217 666 1220 520 850

Table 3. No. of Tasks Preemptions

Graph 3. No. of Tasks Preemptions

From the above analysis, it is evident that the Life-Time

algorithm has more tasks preemptions when compared with

EDF, RM and G_FL algorithms techniques and fewer task

preemptions than the LLF algorithm technique. This result can

also be related to the tasks executions analysis as proportional.

4.4 Tasks Abortions Analysis

Task Abortion is defined as when a task fails to get executed

within its Worst-Case Execution Time (WCET) and so it will be

removed from the scheduling process and marked as “Task

Aborted” signifying that instance of the task is removed and

did not complete execution.

A number of tasks abortions are observed at each scheduler

technique for the various task sets generated which actually

gives us the idea of how many tasks have failed to complete

their work before the deadline. For a real-time scheduler, this

number should be as minimum as possible.

No. of Tasks Abortions

No. of Tasks EDF RM LLF G_FL

Life-

Time

10 21 21 28 21 38

20 178 151 385 221 223

30 398 351 603 477 529

40 603 544 780 709 670

Table 4. No. of Tasks Abortions

Graph 4. No. of Tasks Abortions

From the above analysis, it is evident that the LLF algorithm has

more number of tasks abortions observed for the same task sets

in comparison with the other scheduler techniques. The Life-

Time scheduler results in this analysis are compared with the

other schedulers except and better than the LLF algorithm.

4.5 Cores Utilization Analysis

The scenario of task sets consisting of 40 tasks, 10 cores and

200ms of execution time are considered for the below analysis.

Cores Utilisation

Cores EDF RM LLF G_FL Life-Time

C_1 102 99 200 105 114

C_2 104 100 118 78 110

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1054

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

C_3 90 93 128 95 114

C_4 99 84 152 98 110

C_5 102 93 140 75 114

C_6 92 98 155 74 110

C_7 94 90 149 95 114

C_8 101 99 175 78 110

C_9 91 110 189 85 114

C_10 100 86 202 68 110

Table 5. Cores Utilization

Graph 5. Cores Utilization

From the above analysis, it is evident that the Life-Time

scheduler has better core utilization compared to the other four

(EDF, RM, LLF and G_FL) schedulers compared here, hence

Life-Time scheduler can be a better performer in distributing

the workload among the multicores that are available.

5 RESULTS AND DISCUSSIONS

From the above data analysis, it is evident that the LLF

algorithm has more number of tasks pre-emptions, tasks

abortions and tasks executions are observed for the same task

sets in comparison with the other scheduler techniques. The

Life-Time (LT) scheduler results in a comparable set of analyses

with the other schedulers. From the tasks activations analysis,

it is evident that the same task sets were introduced to all the

schedulers considered and hence the same number of task

activations are observed for all schedulers in a particular

scenario. From the aspect of cores utilization analysis, it is

evident that Life-Time scheduler has better balanced and

distributed core utilization compared to the other four

schedulers (EDF, RM, LLF and G_FL) compared here, hence

Life-Time scheduler can be a better performer in distributing

the workload among the multicores that are considered in this

framework.

6 CONCLUSION

The proposed framework gives the result in comparison with

the other schedulers on the normal factors analysis of

considering tasks pre-emptions, tasks abortions, tasks

activations and tasks executions and hence by proving to be a

framework with a customized scheduler which does not

deviate much from the traditional approaches and findings.

The proposed framework becomes promising and better than

other compared scheduler frameworks when it comes to cores

utilization in multicore setup. It shows that the proposed Life-

Time scheduler framework can provide a better performer in

distributing the workload among the multicores that are

considered and available in the framework.

7 LIMITATIONS AND FUTURE SCOPE

The proposed custom scheduler framework is not completely

automated to handle the random task generations and testing

for quick usages and analysis. So, an automated setup of this

framework can come in very handy in future if developed.

REFERENCES

[1] M. Franklin, “Notes from ENEE759M: Microarchitecture”, Spring 2008

[2] D. Geer, “For Programmers, Multicore Chips Mean Multiple

Challenges”, Computer, September 2007

[3] M. Creeger, “Multicore CPUs for the Masses”, QUEUE, September

2005

[4] R. Alderman, “Multicore Disparities”, VME Now, December 2007,

http://vmenow.com/c/index.php?option=com_content&task=view&i

d=105&Itemid=46

[5] Geetishree Mishra, Rajeshwari Hegde, "Performance optimization of

task intensive real-time applications on multicore ECUs - a hybrid

scheduler", International Journal of Reconfigurable and Embedded

Systems (IJRES), July 2019.

[6] G. Xie et al., "WCRT Analysis and Evaluation for Sporadic Message-

Processing Tasks in Multicore Automotive Gateways," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 2, pp. 281-294, Feb. 2019, DOI:

10.1109/TCAD.2018.2812119.

[7] Y. Wang, X. Jiang, N. Guan, Z. Guo, X. Liu and W. Yi, "Partitioning-

Based Scheduling of OpenMP Task Systems with Tied Tasks," in IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp.

1322-1339, 1 June 2021, DOI: 10.1109/TPDS.2020.3048373.

[8] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi, “Real-time scheduling and

analysis of OpenMP task systems with tied tasks,” in Proc. IEEE Real-

Time Syst. Symp., 2017, pp. 92–103

[9] Y. Li, L. Zhong and F. Lin, "Predicting-Scheduling-Tracking: Charging

Nodes with Non-Deterministic Mobility," in IEEE Access, vol. 9, pp.

2213-2228, 2021, DOI: 10.1109/ACCESS.2020.3046857.

Chen Da-Ren, Chen Young-Long, Chen You-Shyang, Time and Energy

Efficient DVS Scheduling for Real-Time Pinwheel Tasks, Journal of

Applied Research and Technology, Volume 12, Issue 6, 2014, Pages

1025-1039, ISSN 1665-6423, https://doi.org/10.1016/S1665-

6423(14)71663-3.

[10] O. Abid, Q. Cabannes and B. Senouci, "Supervisor and control

investigation in smart/autonomous vehicles: Environment recognition

and objects detection ADAS application case study," 2018 11th

IJSER

http://www.ijser.org/
http://vmenow.com/c/index.php?option=com_content&task=view&id=105&Itemid=46
http://vmenow.com/c/index.php?option=com_content&task=view&id=105&Itemid=46
https://doi.org/10.1016/S1665-6423(14)71663-3
https://doi.org/10.1016/S1665-6423(14)71663-3
https://doi.org/10.1016/S1665-6423(14)71663-3.

International Journal of Scientific & Engineering Research Volume 12, Issue 11, November-2021 1055

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

International Symposium on Mechatronics and its Applications

(ISMA), 2018, pp. 1-7, DOI: 10.1109/ISMA.2018.8330135.

[11] Embedded Systems in Automobiles- A Boon to Automobile Industry

https://www.mepits.com/tutorial/299/Embedded-

System/EmbeddedSystemsin-Automobiles—A-Boon-to-Automobile-

Industry, Published on 20 February 2015.

[12] https://cecas.clemson.edu/cvel/auto/systems/airbag_deployment.htm

l

[13] Chéramy, Maxime & Hladik, Pierre-Emmanuel & Déplanche, Anne-

Marie. (2014). SimSo: A Simulation Tool to Evaluate Real-Time

Multiprocessor Scheduling Algorithms.

[14] https://www.cs.unc.edu/~anderson/papers/ecrts12c.pdf

IJSER

http://www.ijser.org/

