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Abstract— A multi-core processor is a single integrated socket containing more than one processing unit, commonly known as cores. Multicore 

technology has become very popular and needed in recent years because of its wide range of advantages over single-core processors. Multicore 

processing has advantages in Energy Efficiency, Performance, Isolation, Reliability and Robustness and lesser hardware Costs. Automotive electronics 

are any electrically generated systems used in all sorts of automotive systems to control engines. Electronic Control Unit (ECU) is an embedded 

electronic device that reads signals coming from various sensors placed at various parts of the devices and controls important units like any automated 

operations. The overheads faced in multicores include contention of shared resources, synchronization between cores, and the overhead of scheduling 

jobs to those cores present. The proposed Life-Time(LT) scheduler framework is an approach of scheduling multicores in an efficient manner by 

addressing various multicore overheads and mainly focusing on the distribution of workload among the cores for their balanced performance at the 

same rate, keeping the other parameters almost comparable with the standard schedulers such as  EDF, RM, LLF and G_FL scheduling algorithms. 

Keywords: EDF - Earliest Deadline First, RM - Rate Monotonic, LLF - Least Laxity First, G_FL - Global-Fair Lateness. 

——————————      —————————— 

1 INTRODUCTION                                                                     

A single-core processor has to run many instructions in a 

limited amount of time, which demands to increase its speed of 

execution and that is out of normal mode, which in turn 

increases the heat dissipation and hence the performance, or 

integrity of the processor will be compromised. Efficient 

algorithms should be used for the implementation of cores to 

achieve better performance. Software that can run parallel is 

preferred. Multicore systems are used widely in various 

domains including Automotive Electronics. 

 

Concentrating on vehicle automation, automotive electronics 

are any electrically generated systems used in road vehicles to 

control engines. The first electronic pieces used to control 

engine functions are referred to as Engine Control Units (ECU). 

A modern car may have up to 100 ECUs and a commercial 

vehicle up to 40. Electronic Control Unit (ECU) is an embedded 

electronic device that reads signals coming from various 

sensors placed at various parts of the car and controls important 

functions like any automated operations. A software supervisor 

is a computer system that controls different applications 

running simultaneously in the vehicle. Real-time requirements 

are mandatory in the automotive domain and are to be 

respected. 

 

In this paper, cluster-based scheduling of tasks is proposed 

where the total number of tasks entered by the user is first 

grouped and then scheduled based on their cluster. The SimSo 

tool is used for scheduling purposes with scripts written in 

python. Random test cases are generated to schedule on the 

custom Life Time (LT) Scheduler  and the test result is 

compared with the performance of the standard schedulers 

such as Earliest Deadline First (EDF), Rate Monotonic (RM), 

Least Laxity First (LLF) and Global-Fair Lateness (G-FL). 

 

The overheads faced in multicores include contention of shared 

resources, synchronization between cores, and the overhead of 

scheduling jobs to those cores present. It may seem that by 

increasing the number of cores we can achieve parallelism and 

hence by reducing the load and execution becomes faster but as 

the number of cores is increased without proper control over it 

then overhead multicores become more dominant and affect 

the performance of the multicore system negatively. So, it is not 

correct to think that a multicore system can be made faster just 

by adding more cores. The number of cores that can be added 

should be able to balance so that it decreases the overheads on 

a single core system and it doesn't possess significantly higher 

overheads of the multicores. Thus, proper research or study on 

scheduling algorithms is needed to solve the overheads faced 

by the multicores. 

 
Fig 1. ECU Braking System 

 

Non-linear growth in acceleration and deceleration when 

throttle or brake is applied so that greater change in speed can 

be seen with small human intervention as the intensity of 

throttle or brake is increased over time which is not easy to 
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achieve without an Electronic Control Unit (ECU) in the 

braking system. 

2 STANDARD ALGORITHMS 

In a real-time system, a scheduling algorithm decides the 

sequence in which tasks need to be executed. 

 
2.1 Earliest Deadline First 

In Earliest Deadline First (EDF) scheduling, at every scheduling 

point the task having the shortest deadline is taken up for 

scheduling. The Earliest deadline first selects a task according 

to its deadline such that a task with the earliest deadline has 

higher priority than others. It means the priority of a task is 

inversely proportional to its absolute deadline. EDF is an 

optimal algorithm which means if a task set is feasible, it is 

surely scheduled by EDF. Another thing is that EDF does not 

specifically take any assumption on periodicity of tasks so it is 

independent of the Period of task and therefore can be used to 

schedule aperiodic tasks as well. 

2.2 Rate Monotonic 

Rate- Monotonic Algorithm uses a mathematical model of static 

priority-based scheduling where the priority is the period of the 

tasks. It supports the intuition that the tasks that occur more 

frequently should be given higher priority. The Working of 

RMA depends on the periods of the tasks. These feasibility tests 

are generally known as schedulability bounds. For an algorithm 

to work, it must be within certain limits. Schedulability bound 

provides this limit. 

2.3 Least Laxity First 

The Least Laxity First(LLF) scheduling algorithm assigns a 

priority to a task according to its executing urgency. The smaller 

the laxity value of a task is, the higher priority it will get and the 

sooner it gets executed. LLF algorithm also results in more task 

preemption as the laxity of each task changes at every instant of 

time and if a task other than the presently executing task gets lesser 

laxity then the present task will be preempted to schedule the other 

task which got lesser laxity. 

2.4 G_FL 

G-FL is a G-EDF-like scheduler but has lower maximum lateness 

bounds than GEDF. Due to its G-EDF like nature, it can be used 

within existing systems that implement arbitrary-deadline [14]. 

3 PROPOSED TECHNIQUE 

In this section, the execution flow of the task sets using the Life-

Time scheduler logic is defined. 

 

Step 1: Test Object Creation 

All the necessary building blocks for the execution are gathered 

in one python class called “my_config”. So, the first thing a user 

needs to do is create an object for this class and then explore the 

inner possibilities to add and execute a test. It is very convenient 

to have all the building blocks available in one class. 

 

 

 

 

Example: 

 
Fig 2. Test object ‘TestObj’ creation 

 

Step 2: Tasks Addition & Distribution 

The tasks that are added are classified into any one of the five 

different clusters available based on the task parameters given 

at the time of adding tasks into the framework.  

They are namely, 

1. Application Software tasks 

2. ISR (Interrupt Service Routine) tasks 

3. Resource dependent tasks 

4. High-frequency tasks 

5. Low-frequency tasks 

Example:  

 

 
Fig 3. Adding tasks to the TestObj object 

 

Step 3: Cores Addition & Distribution 

Once the overall tasks are added they are classified into 

clusters, the total number of cores for execution is specified and 

they are distributed among the available clusters 

proportionally based on the total Worst-Case Execution Time 

(WCET) within which all tasks in each cluster will be executed. 

Example: 
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Fig 4. Adding cores to the TestObj object 

 

Step 4: Specify Execution Time 

Once both tasks and cores are added and distributed among the 

available clusters, the total execution time specified to run the 

simulation is specified to run the framework. 

 

 

Example: 

 
Fig 5. Adding Simulation Time to TestObj object 

 

Step 5: Life-Time (LT) Scheduler 

In this paper, we will introduce a new method of assigning 

priorities depending on each task’s lifetime, where Life-time = 

Deadline-time - Arrival-time → (if the task is not yet running) 

Lifetime = Deadline-time - present-time → (if the task is 

running) 

If the lifetime is less than the priority will be high and if the 

lifetime is more than the priority will be less for a task. By 

considering the priorities, tasks will be preempted whenever 

necessary. 

 

Step 6: Run the simulation for each cluster of tasks 

Once the setup is all done, we can run the simulation which 

internally runs as specified in the cluster manner with better 

cores distributions and task executions. 

4 DATA ANALYSIS 

The Simulations of this framework were tested using a python 

programming language by considering a variable number of 

task sets considered at each iteration in the order of 10, 20, 30 

and 40 numbers of task sets running for a total of 200ms and 

with 10 cores. The framework is tested for the custom scheduler 

technique “Life-Time” scheduler, after which the results are 

compared with the standard scheduling algorithms namely 

Earliest Deadline First (EDF), Rate Monotonic (RM), Least 

Laxity First (LLF) and Global-Fair Lateness. 

 

4.1 Tasks Activations Analysis 

Task activation is defined as the instantiation of any instance of 

a task (periodic or aperiodic) that occurred in the execution and 

hence every activation of the instance of the periodic task is 

considered as one task activation. 

A number of tasks activations are observed at each scheduler 

technique for the various task sets generated. This gives an 

overview of how many task instances were inserted, where 

each occurrence of a periodic task is considered as one instance 

of the task.  

No. of Tasks Activations 

No. of Tasks EDF RM LLF G_FL Life-Time 

10 235 235 235 235 235 

20 442 442 442 442 442 

30 637 637 637 637 637 

40 825 825 825 825 825 

Table 1. No. of Tasks Activations 

Graph 1. No. of Tasks Activations 

From the above analysis, it is evident that the same task sets 

were introduced to all the schedulers considered and hence the 

same number of task activations are observed for all schedulers 

in the particular scenarios. 
 

4.2 Tasks Executions Analysis 

 

A number of tasks executions are observed at each scheduler 

technique for the various task sets generated. This gives an 

overview of how many task scenarios were actually running in 

the simulation time as a whole. Each occurrence of a periodic 

task is considered as one instance of the task. 
 

No. of Tasks Executions 

No. of 

Tasks EDF RM LLF G_FL Life-Time 

10 273 284 477 287 311 

20 588 713 1175 573 644 

30 781 858 1474 745 785 

40 975 952 1608 851 1120 
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Table 2. No. of Tasks Executions 

Graph 2. No. of Tasks Executions 

From the above analysis, it is evident that the Life-Time 

scheduler results are comparable to the rest of the scheduler 

techniques (EDF, RM, and G_FL) and better than LLF. 
 

4.3 Tasks Preemptions Analysis 

Task preemption is defined as the removal of a running instance 

of the task when the scheduler finds another better fit and more 

prior task instance that needs to be executed first than the 

present running task instance. 

A number of task preemptions are observed at each scheduler 

technique for the various task sets generated. 

No. of Tasks Preemptions 

No. of 

Tasks EDF RM LLF G_FL Life-Time 

10 38 49 244 52 94 

20 159 391 831 209 335 

30 175 557 1107 425 582 

40 217 666 1220 520 850 

Table 3. No. of Tasks Preemptions

Graph 3. No. of Tasks Preemptions 

From the above analysis, it is evident that the Life-Time 

algorithm has more tasks preemptions when compared with 

EDF, RM and G_FL algorithms techniques and fewer task 

preemptions than the LLF algorithm technique. This result can 

also be related to the tasks executions analysis as proportional. 

 

4.4 Tasks Abortions Analysis 

Task Abortion is defined as when a task fails to get executed 

within its Worst-Case Execution Time (WCET) and so it will be 

removed from the scheduling process and marked as “Task 

Aborted” signifying that instance of the task is removed and 

did not complete execution. 

A number of tasks abortions are observed at each scheduler 

technique for the various task sets generated which actually 

gives us the idea of how many tasks have failed to complete 

their work before the deadline. For a real-time scheduler, this 

number should be as minimum as possible. 

No. of Tasks Abortions 

No. of Tasks EDF RM LLF G_FL 

Life-

Time 

10 21 21 28 21 38 

20 178 151 385 221 223 

30 398 351 603 477 529 

40 603 544 780 709 670 

Table 4. No. of Tasks Abortions 

 

Graph 4. No. of Tasks Abortions 

From the above analysis, it is evident that the LLF algorithm has 

more number of tasks abortions observed for the same task sets 

in comparison with the other scheduler techniques. The Life-

Time scheduler results in this analysis are compared with the 

other schedulers except and better than the LLF algorithm. 
 

4.5 Cores Utilization Analysis 

The scenario of task sets consisting of 40 tasks, 10 cores and 

200ms of execution time are considered for the below analysis. 
 

Cores Utilisation 

Cores EDF RM LLF G_FL Life-Time 

C_1 102 99 200 105 114 

C_2 104 100 118 78 110 
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C_3 90 93 128 95 114 

C_4 99 84 152 98 110 

C_5 102 93 140 75 114 

C_6 92 98 155 74 110 

C_7 94 90 149 95 114 

C_8 101 99 175 78 110 

C_9 91 110 189 85 114 

C_10 100 86 202 68 110 

Table 5. Cores Utilization 

Graph 5. Cores Utilization 

From the above analysis, it is evident that the Life-Time 

scheduler has better core utilization compared to the other four 

(EDF, RM, LLF and G_FL) schedulers compared here, hence 

Life-Time scheduler can be a better performer in distributing 

the workload among the multicores that are available. 

5 RESULTS AND DISCUSSIONS 

From the above data analysis, it is evident that the LLF 

algorithm has more number of tasks pre-emptions, tasks 

abortions and tasks executions are observed for the same task 

sets in comparison with the other scheduler techniques. The 

Life-Time (LT) scheduler results in a comparable set of analyses 

with the other schedulers. From the tasks activations analysis, 

it is evident that the same task sets were introduced to all the 

schedulers considered and hence the same number of task 

activations are observed for all schedulers in a particular 

scenario. From the aspect of cores utilization analysis, it is 

evident that Life-Time scheduler has better balanced and 

distributed core utilization compared to the other four 

schedulers (EDF, RM, LLF and G_FL) compared here, hence 

Life-Time scheduler can be a better performer in distributing 

the workload among the multicores that are considered in this 

framework. 

6 CONCLUSION 

The proposed framework gives the result in comparison with 

the other schedulers on the normal factors analysis of 

considering tasks pre-emptions, tasks abortions, tasks 

activations and tasks executions and hence by proving to be a 

framework with a customized scheduler which does not 

deviate much from the traditional approaches and findings. 

The proposed framework becomes promising and better than 

other compared scheduler frameworks when it comes to cores 

utilization in multicore setup. It shows that the proposed Life-

Time scheduler framework can provide a better performer in 

distributing the workload among the multicores that are 

considered and available in the framework.  

7 LIMITATIONS AND FUTURE SCOPE 

The proposed custom scheduler framework is not completely 

automated to handle the random task generations and testing 

for quick usages and analysis. So, an automated setup of this 

framework can come in very handy in future if developed. 
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